ad
Apply Now Request Information
Back To Top

ACS Program

Artificial Intelligence Specialist - LEA.E3

ACS

1380 hours

Qualified Instructors

This program can be offered at the campus(es) below. Please contact the campus of your choosing for program availability and delivery methods.

Location Icon

View Campus Availability

Dropdown Arrow
Delivery Icon

View Delivery Methods

Dropdown Arrow
In Person Icon

On Campus

Learn How to Design, Develop, Test, and Deploy AI Systems and Applications

CDI College's Artificial Intelligence Specialist - LEA.E3 program provides comprehensive training in data analysis and application development for business intelligence roles.

 

The program cultivates skills such as programming, effective communication, and teamwork. It emphasizes professional ethics, information security, and responsible AI usage, with a focus on meticulous task completion.

  • BUSINESS INTELLIGENCE
  • DATA VISUALIZATION
  • DEEP LEARNING
  • MACHINE LEARNING
  • OBJECT-ORIENTED PROGRAMMING
  • OPERATING SYSTEMS
  • PROBLEM SOLVING
  • PROGRAMMING TECHNIQUES
  • WEB DEVELOPMENT
Credential Image

Authorized by the Ministry of Higher Education. CDI College Business. Technology. Health Care (Permit 749747)

Program Intro Background

Program Courses

Work Function

Plus Icon Minus Icon

Background. Work functions of the artificial intelligence specialist. Practice of the profession in different work environments. Role of the artificial intelligence specialist and those of related professions. Artificial intelligence (Trends, Usefulness, Risks, Issues and Challenges). Professional ethics at work. Major hardware and software components of a computer. Windows™ desktop and file system. Basic concepts of word processing software (Creating Microsoft Word™ documents, using basic layout elements, tables, graphics, spell checking). Basic concepts of a database management software (Application of key concepts of a database management system, use of Microsoft Access™ to create a database, creation of queries, forms, reports and statements, tables, relationships, normalization, primary and secondary keys, use of interfaces for managing data inputs and outputs, design, modeling and normalization of relational, object-oriented and distributed databases, design of user-friendly graphical user interfaces). Use of the Internet for communication and research. Work methods and ergonomics.

Structured Approach to Problem Solving

Plus Icon Minus Icon

Identification of input and output data. Determination of relevant entities and their attributes. Sketch of the design. Identification of concepts related to data, operators and functions. Priority of mathematical operators. Distinction of basic data types, variables and constants. Evaluation of expressions using operators. Algorithm development. Creation of algorithms for the use of tables. Representation of logic using pseudocodes and flow charts. Translation of algorithms into a programming language. Logic (decision and loops, etc.). Use of code-debugging tools with development tools to generate web applications (Microsoft Visual Studio).

Object-Oriented Programming

Plus Icon Minus Icon

Possibilities of an object-oriented programming language. Adaptation of algorithms and pseudocodes to an object-oriented programming language. Language, syntax and semantics of graphic modeling based on pictograms. Declaration and use of variables, parameters and constants. Use of operators and expressions (inheritance and polymorphism). Coding of different control structures. Use of a code library to produce management applications with a rich graphical interface. Declaration and use of complex variables (arrays, enums and structures). Writing functions. Writing error handlers. Compilation and debugging tools for the development environment (locating compilation errors, correcting compilation errors). Software architecture. Validation of results. Correction of algorithms and or pseudocode. Application of test cases. Analyze the results of the test cases. Validation of the program operation. Documentation.

Databases

Plus Icon Minus Icon

Creation, modification and exploitation of a relational database or of another nature (SQL). Theory of the relational model. SQL and NoSQL approach. Queries and subqueries and advanced SQL. Good coding practices (comments, checkpoints, script documentation, etc.) Data replication. Data management (triggers, stored procedures, user-defined functions) Optimization of data access through indexes. Optimization of data access through joins. Designing a security plan for a database. Interpretation and design of conceptual, logical and physical data models. Basic database administration operations. Scripts and batches. Code blocks and control structures. Structure nesting. Repeat structures. Entities, attributes, cardinality and relationships. Database practices (normalization, denormalization, star schema VS snowflake, data warehouse VS data lake, etc.) Software architecture content elements (Tables, views, facts VS dimensions, etc.). ETL and ELT (Extract - Transform - Load) principles. Creation of forms and addition of interface elements (Buttons, choice list fields, text fields, numeric fields). Design of the various sections of a report. Modify the layout of a report. Advanced formatting. Reproduce formatting and automatic formatting. Creating subforms. Formatting of controls. Production of user documentation specific to the developed application (Glossary, data dictionary, guide, comments in the code, etc.).

Operating System

Plus Icon Minus Icon

Installation, administration and support of a Linux operating system. Available documentation. Tree structure, directories and file locations. Manipulation and editing of files. Administration of user accounts, groups and access permissions. Introduction to Bash script development. Tests, conditions and main components of a script. Log management, loops and conditional functions. Shell environment and physical environment. Installation, management and compilation of applications. Linux system configuration with data backup and archiving. Use of Linux system tools.

Server Side Web Development

Plus Icon Minus Icon

Introduction to dynamic web content. Setting up development servers. Object-oriented imperative language (PHP). Expressions and flow control in PHP. Functions and objects in PHP. Tables in PHP. Relational database management system (MySQL). Access MySQL using PHP. Forms Management. Cookies, sessions and authentication.

Business Intelligence 1: Introduction to Statistics

Plus Icon Minus Icon

Fundamental tools and methods of data analysis and statistics. Visual representations of data. Descriptive statistical measures (Tables and graphs, measures of central tendency, position and dispersion, sampling methods, correlation and interaction between explanatory variables, multicollinearity and heteroscedasticity). Probability distributions and data modeling (Definitions and basic principles, conditional probabilities, independence, mathematical expectation, variance and confidence interval, distributions (e.g., normal-binomial, Gaussian, geometric, hypergeometric, poisson, gamma, etc.), assumptions, postulates and distributions). Sampling and parameter estimation (Central limit theorem, estimation of a mean, estimation of a proportion, hypothesis tests (T, Z, Anova, etc.), use of test VS control groups, statistical significance). Statistical inference (Probabilistic and deterministic models, interpretation of coefficients, residual analysis). Applications to artificial intelligence and business decision making.

Business Intelligence 2: Predictive and Prescriptive Analysis

Plus Icon Minus Icon

Types of variables (Categorical, continuous, ordinal, discrete). Type of data (Structured, unstructured). Data preparation. Variable selection methods. Analysis methods (Descriptive, predictive, prescriptive). Model validation methods (Cross validation, by data set (training, test, validation)) Principles of heuristics. Trend analysis. Regression analysis. Classification and categorization analysis. Forecasting techniques. Data mining techniques (Exploration of available data, profiling and descriptive statistics of data, analytical design and model development, virtuous circle of data mining - CRISP-DM methodology). Model building and analysis. Algorithm design. Simulation and scenario analysis. Results and risk analysis. Linear optimization models. Dynamic optimization models. Longitudinal and time series models.

Business Intelligence 3: Expert Systems

Plus Icon Minus Icon

Introduction to expert systems. Constituents of expert systems (Knowledge, inference engines). Classification of expert systems (Order 0, Order 0.5, Order 1). Knowledge acquisition (Application domains, platforms, development languages). Knowledge representation (Constituents, knowledge representation, features, fact base (control strategies), rule base (semantic networks, conceptual and logical graphs)). Rule-based systems (Variables, conjunctions, disjunctions). Control strategies. Inference engines (forward chaining, backward chaining, mixed chaining). Interface modules. Role of social networks and the Internet of Things in data science. Information system supporting business decision making (Business analysis, data science, artificial intelligence, decision support systems). Machine learning. Megadata (Big Data). Expert systems (Dendralb Mycin, Prospector). Uncertain reasoning (Bayes' theory, inference engine, certainty factors, fuzzy sets). Case studies.

Data Science Reference Tools

Plus Icon Minus Icon

Installation and configuration of the R work environment. Distributed version control systems (Git version control system). Open source language (Vectors, matrices, factors, lists, data frames, arrays, implicit apply loops). R programming language (data import, data cleaning and transformation, data filtering, data sorting, data grouping, data aggregation, data selection, dataset analysis, use of function libraries, data visualization, data export). Designing and writing queries to perform statistical analysis (Introduction to RMarkdown, iIntroduction to Shiny R). Design of machine learning models (Supervised learning, unsupervised learning, simulation and bootstrapping, package creation).

Data Vizualisation and Interpretation 1

Plus Icon Minus Icon

Benefits of effective data visualization. The importance of data visualization for business decision making. Good visualization practices. "Data story telling. Data visualization software (TABLEAU). Workbook (Data sources, spreadsheet). Importing data. Transformation of source data. Visual data exploration and data processing. Connecting to data and presenting connector options. Merging data. Join condition. Introduction to the different types of visualizations (Good practices regarding the choice of visualizations according to the objectives pursued, choosing your visualizations, golden rules for graphics and generating conclusions, diagrams, tables, graphs and maps, infographics, dashboards). Data processing, filters, sorting and organization of data. Creation of calculations and animated charts. Sharing dashboards. Applications to business decision making.

Data Vizualisation and Interpretation 2

Plus Icon Minus Icon

Theory of dashboards. Security in a visualization context (permissions management, data protection). Interactive data visualization tools (Power BI). Installation and configuration of Power BI. Data import (Data collection, connectors, connection options). Data transformations (Data processing, dimensional organization). Data modelling. Visualization in Power BI. Data analysis (Creation of calculated columns and measures). Consulting and sharing data. Use of the R language within Power BI. DAX language. M language (How to choose when to use DAX language or M language). Power Automate language. Creation, configuration, natural language questioning and publishing of reports. Applications to business decision making.

Data Science Programming Techniques 1

Plus Icon Minus Icon

Introduction of the interpreted programming environment (Python) (Installation and configuration of Python, Notebook concepts, available platforms (Jupyter, Spider), Anaconda). The interpreter and its environment. Syntax. Control statements (If, else, for, break, continue, pass, etc.). Functions and loops. Data structure. Modules. Inputs and outputs. Errors and exceptions. Classes. Libraries, Dictionaries and Tuples. Operators and indexes. Object types and data formatting. Lists. Importing external files and data. Libraries and basic packages (Pandas, NumPy). Modules and code organization.

Data Science Programming Techniques 2

Plus Icon Minus Icon

Advanced notions of interpreted programming (Python) (Generators, context manager, accessors and descriptors, list comprehensions and regular expressions, iterators, etc.). Artificial Intelligence (Advanced modelling, recommender systems, natural language processing, mathematical and machine learning libraries (Numpy, SciPy, Pytorch, etc.), machine learning, cognitive computing). Megadata (Big Data: Hadoop®, Spark™, NoSQL and IoT, processing and unstructured data). Data mining and visualization with Matplotlib. Applications to business decision making. Integration of artificial intelligence in the workplace.

Applications Development 1

Plus Icon Minus Icon

Client-side programming. Dynamizing a website with scripting language (JavaScript). Tools. Libraries. Platforms. Application logic programming. Information architecture. Management of interactions between the web interface and the user. Animation and manipulation techniques of web page elements. Design of rich graphic interfaces. Creation of an HTML web page. CSS style sheets. Creation of asynchronous requests. Preparation of the environment and the database. Transactional web applications (client and server side). Creation of requests (Clauses, operators, commands, parameters). Data manipulation. Development of supervision and monitoring applications. Development of multiplatform applications. Deployment of applications. Quality control of the application. Writing of documentation. Programming of data acquisition, processing and transmission instructions. Programming of the interactions between the interface and the user. Big Data: IoT. Development of applications applied to the field of artificial intelligence.

Applications Development 2

Plus Icon Minus Icon

Creation of distributed and scalable applications (Hadoop). Working environment. Tools and utilities. Data preparation. Workflow and data management. Data collection. Machine learning. Clustering. Anomaly detection. IT project management (writing user stories, concurrent IT project management approaches (Waterfall, RACE, Scrum, JIRA, Sprint, etc.), introduction to agile method concepts). Development of applications applied to the field of artificial intelligence.

Machine Learning

Plus Icon Minus Icon

Linear regression (Simple linear regression, multiple linear regression, building a linear regression model, publishing the model). Logistic regression (Logistic regression, building a model, publishing the model). Data analysis and machine learning (Data analysis, data science project life cycle, purpose of machine learning). Learning algorithms (Supervised, unsupervised, reinforcement, deep). Machine learning tasks (Segmentation and clustering, Regression (price prediction, forecasting), regression tree and classification, text mining (sentiment analysis, categorization and text mining techniques) Introduction to different types of models (Basic data preparation, variable and model selection, model publication, model performance measures, data control, life cycle, updating and maintenance). Basic models (Trees, randomized drills, survival analyses, longitudinal and temporal analyses).

Deep Learning

Plus Icon Minus Icon

Machine learning solution (Data collection, data tuning, solution creation, testing, updating and maintenance of model performance, performance criteria and metrics (Area under the curve, correct classification rate, VIF, etc.). Open source and cross-platform machine learning infrastructure (ML.NET) (Core components, features). Traffic analysis for accident prediction. Artificial neural networks (Principles, utility). Types of neural networks (Supervised learning networks (classification, prediction, regression), unsupervised learning networks, feedforward neural network, recurrent neural network, convolutional neural network, generative adversarial networks). Layers (input, output, hidden). Transfer learning. Named entity recognition. Object detection. Machine translation. Text analysis (Natural language processing, recommendation system). Open source infrastructure (Azure Machine Learning) (Automated machine learning, mode of operation (pipeline), supervised learning task (classification, prediction, and regression), time series prediction (multivariate regression)). Data preparation (Data visualization, data transformation, commonly used modules, statistical functions). Model preparation for deployment (Evaluation of a model, creation and configuration of a Web service, consumption of a Web service). Model applications (Neural networks, natural language processing, recommender systems, others).

Integration Project

Plus Icon Minus Icon

Analysis of the client's needs (mandate). Documentation of the needs. Modelling of the application that meets the identified needs. Choice of technology. Design of the application. Implementation of the application. Testing of the application. Deployment of the application. Presentation of the application (Report).

End of Studies Project

Plus Icon Minus Icon

Practice and integration of personal and professional skills necessary to practice the profession. Application of knowledge and strategies learned in class in a business context. Integration into the professional environment. Collaboration with the work team. Participation in meetings. Taking charge of projects. Familiarization with operating tools. Adaptation to a corporate culture. Professional conduct in accordance with the ethics of the profession.

Learn today’s leading software and methodologies

Admission

Benefits of this program

Employment Opportunities

  • Secondary V diploma or its recognized equivalent
  • The person holds a Secondary V diploma (or its recognized equivalent), or a Diploma of Vocational Studies (DEP)
  • Successful admission test
  • A person who has received instruction considered sufficient by the college and meets any of the following conditions may be admitted to a program of studies leading to an Attestation of College Studies:

- the person has interrupted his or her full-time studies or pursued full-time postsecondary studies for at least 2 consecutive terms or 1 school year;

- the person is covered by an agreement entered into between the college and an employer or by a government program of studies;

- the person has interrupted his or her full-time studies for one term and pursued full-time postsecondary studies for one term; or

- the person holds a Secondary School Vocational Diploma.

Ref.: art. 4 College Education Regulations

  • Program offered in French or English
  • Day or evening classes
  • Learn in an inclusive environment
  • Tight-knit, supportive community with classmates, instructors, and support staff
  • Dedicated and passionate instructors
  • Learn industry-standard skills and technologies
  • Market-driven program
  • Earn your  Attestation of College Studies in just a few months
  • Career Services department provides assistance finding jobs and building resumes
  • Authorized by the Ministry of Higher Education. CDI College Business. Technology. Health Care (Permit 749747)
  • Business Intelligence Technician
  • Artificial Intelligence Technician
  • Business Intelligence Technical Analyst
  • Artificial Intelligence Technical Analyst
  • Machine Learning Technician
  • Application Developer (SQL, megadata, Hadoop)
  • Visualization Tools Specialist
  • Database Administrator (DBA)
  • Database Analyst

 

  • Secondary V diploma or its recognized equivalent
  • The person holds a Secondary V diploma (or its recognized equivalent), or a Diploma of Vocational Studies (DEP)
  • Successful admission test
  • A person who has received instruction considered sufficient by the college and meets any of the following conditions may be admitted to a program of studies leading to an Attestation of College Studies:

- the person has interrupted his or her full-time studies or pursued full-time postsecondary studies for at least 2 consecutive terms or 1 school year;

- the person is covered by an agreement entered into between the college and an employer or by a government program of studies;

- the person has interrupted his or her full-time studies for one term and pursued full-time postsecondary studies for one term; or

- the person holds a Secondary School Vocational Diploma.

Ref.: art. 4 College Education Regulations

  • Program offered in French or English
  • Day or evening classes
  • Learn in an inclusive environment
  • Tight-knit, supportive community with classmates, instructors, and support staff
  • Dedicated and passionate instructors
  • Learn industry-standard skills and technologies
  • Market-driven program
  • Earn your  Attestation of College Studies in just a few months
  • Career Services department provides assistance finding jobs and building resumes
  • Authorized by the Ministry of Higher Education. CDI College Business. Technology. Health Care (Permit 749747)
  • Business Intelligence Technician
  • Artificial Intelligence Technician
  • Business Intelligence Technical Analyst
  • Artificial Intelligence Technical Analyst
  • Machine Learning Technician
  • Application Developer (SQL, megadata, Hadoop)
  • Visualization Tools Specialist
  • Database Administrator (DBA)
  • Database Analyst

 

Video Thumbnail

Experience the CDI College Difference

Play IconPlay Video

Industry Certifications

Gain a distinct advantage by earning industry-recognized certifications that validate your expertise and skills in key areas such as digital marketing, project management, and CRM. Our program prepares you to succeed, whether you're advancing, switching careers, or starting your own business. Invest in yourself and join a community of certified professionals shaping the digital economy.

Hubspot Logo

Hear From Our Graduates

Double Quote Icon

“My instructor has helped a lot over the past six months of my education here at CDI College. He keeps me open to new ideas by challenging me to do more.”

Michael T.

Double Quote Icon

“I'm very proud to get an instructor that is as kind and available as mine was. He was very supportive of all of us in the classroom and really helped us make our way throughout education.”

Anthony M.

Start Your Career Journey Today

Click on the button to book an appointment and:

  • Get Start Dates
  • Learn About Your Tuition and Funding Options
  • Meet An Admissions Representative for FREE One-on-One Career Advice